

16-Mbit (1M x 16) Pseudo Static RAM

Features

Wide voltage range: 1.7V-1.95V
Access Time: 55 ns, 70 ns
Ultra-low active power

Typical active current: TBD @ f = 1 MHz
 Typical active current: TBD @ f = f_{max}

Ultra low standby power16-word Page Mode

• Automatic power-down when deselected

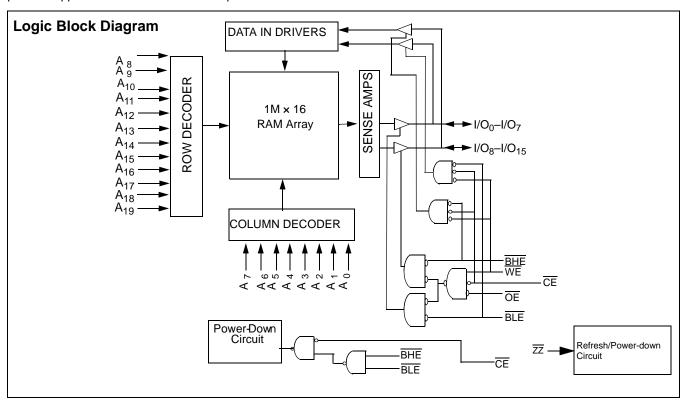
· CMOS for optimum speed/power

Deep Sleep Mode

• Offered in a Lead-Free 48-ball BGA Package

• Operating Temperature: -40°C to +85°C

Functional Description^[1]

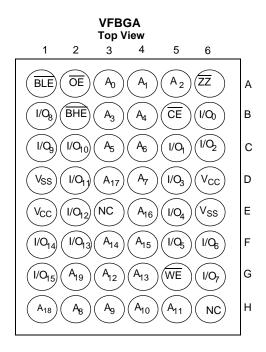

The CYU01M16ZFC is a high-performance CMOS Pseudo Static RAM organized as 1M words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL) in portable applications such as cellular telephones. The device

can be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$ LOW) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_1$ 9). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_1$ 5) is written into the location specified on the address pins (A $_0$ through A $_1$ 9).

Reading from the device is accomplished by taking Chip Enables ($\overline{\text{CE}}$ LOW) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O0 to I/O7. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O8 to I/O15. Refer to the truth table for a complete description of read and write modes.

Deep Sleep Mode is enabled by driving \overline{ZZ} LOW. See the Truth Table for a complete description of Read, Write, and Deep Sleep mode.



Note

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2, 3]

Product Portfolio^[4]

							Power D	issipatio	sipation				
				Speed	Operating I _{CC} (mA)								
Product	V	V _{CC} Range (V)		(ns)	f = 1MHz		f = f _{max}		Standby I _{SB2} (μA)				
CYU01M16ZFC	Min.	Typ. ^[4]	Max.		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.			
	1.7	1.8	1.95	55	TBD	5	TBD	35	TBD	60			
				70				25					

Low-Power Modes

At power-up, all four sections of the die are activated and the PSRAM enters into its default state of full memory size and refresh space. This device provides four different Low-Power Modes.

- 1. Reduced Memory Size Operation
- 2. Partial Array Refresh
- 3. Deep Sleep Mode
- 4. Temperature Controlled Refresh

Reduced Memory Size Operation

In this mode, the 16 Mb PSRAM can be operated as a 12-Mbit, 8-Mbit or a 4-Mbit memory block. Please refer to "Variable Address Space Register (VAR)" on page 4 for the protocol to turn on/off sections of the memory. The device remains in RMS mode until changes to the Variable Address Space register are made to revert back to a complete 16-Mbit PSRAM.

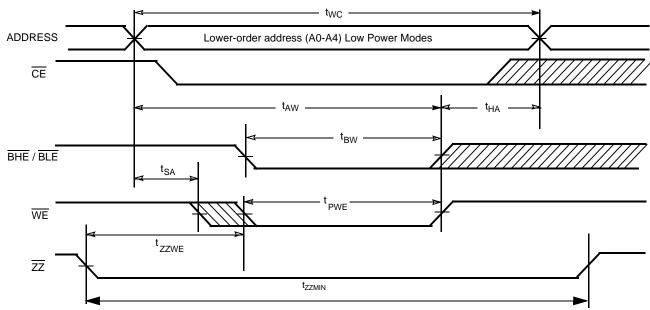
Partial Array Refresh

The Partial Array Refresh mode allows customers to turn off sections of the memory block in the Stand-by mode (with \overline{ZZ}

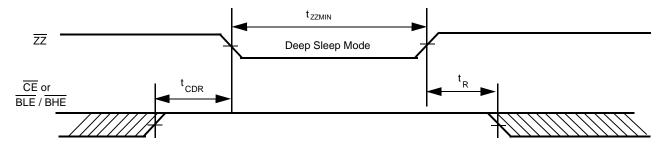
tied low) to reduce standby current. In this mode the PSRAM will only refresh certain portions of the memory in the Stand-By Mode, as configured by the user through the settings in the Variable Address Register.

Once \overline{ZZ} returns high in this mode, the PSRAM goes back to operating in full address refresh. Please refer to "Variable Address Space Register (VAR)" on page 4 for the protocol to turn off sections of the memory in Stand-By mode. If the VAR register is not updated after the power up, the PSRAM will be in its default state. In the default state the whole memory array will be refreshed in the Stand-By Mode. The 16-Mbit MoBL3 is divided into four 4-Mbit sections allowing certain sections to be active (i.e., refreshed).

Deep Sleep Mode

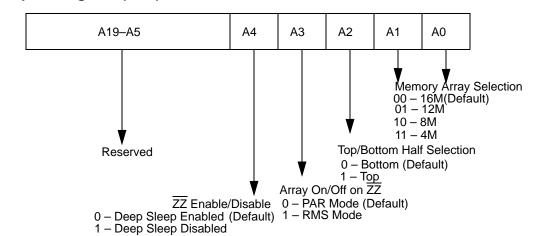

In this mode, the data integrity in the PSRAM is not guaranteed. This mode can be used to lower the power consumption of the PSRAM in an application. This mode can be enabled and disabled through VAR similar to the \underline{RMS} and PAR mode. Deep Sleep Mode is activated by driving \overline{ZZ} LOW. The device stays in the deep sleep mode until \overline{ZZ} is driven HIGH.

Notes:


- 2. Ball H6, E3 can be used to upgrade to 32M and 64M density respectively.
- 3. NC "no connect" not connected internally to the die.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. Tested initially and after any design changes that may affect the parameter.

Variable Address Mode Register (VAR) Update^[5, 6]

Deep Sleep Mode—Entry/Exit [7]


VAR Update and Deep Sleep Mode Timing^[5, 6]

Parameter	Description	Min.	Max.	Unit
t _{ZZWE}	ZZ LOW to Write Start		1	μS
t _{CDR}	Chip deselect to ZZ LOW	0		ns
t _R ^[7]	Operation Recovery Time (Deep Sleep Mode only)	200		μS
t _{ZZMIN}	Deep Sleep Mode Time	8		μS

- Notes:
 5. OE and the data pins are in a don't care state while the device is in variable address mode.
- 6. All other timing parameters are as shown in the data sheets.7. t_R applies only in the deep sleep mode.

Variable Address Space Register (VAR)

Variable Address Space—Address Patterns

		Part	ial Array Refresh Mode (A3 = 0, A4 = 1)		
A2	A1, A0	Refresh Section	Address	Size	Density
0	1 1	1/4 th of the array	00000h - 3FFFFh (A19 = A18 = 0)	256K x 16	4M
0	1 0	1/2 th of the array	00000h - 7FFFFh (A19 = 0)	512K x 16	8M
0	0 1	3/4 th of the array	00000h - BFFFFh (A19:A18 not equal to 1 1)	768K x 16	12M
1	11	1/4 th of the array	C0000h - FFFFFh (A19 = A18= 1)	256K x 16	4M
1	1 0	1/2 th of the array	80000h - FFFFFh (A19 = 1)	512K x16	8M
1	0 1	3/4 th of the array	40000h - FFFFFh (A19:A18 not equal to 0 0)	786K x16	12M
		Redu	ced Memory Size Mode (A3 = 1, A4 = 1)		
0	11	1/4 th of the array	00000h - 3FFFFh (A19 = A18 = 0)	256K x 16	4M
0	1 0	1/2 th of the array	00000h - 7FFFFh (A19 = 0)	512K x 16	8M
0	0 1	3/4 th of the array	00000h - BFFFFh (A19:A18 not equal to 1 1)	768K x 16	12M
0	0 0	Full array	00000h - FFFFFh (Default)	1M x 16	16M
1	1 1	1/4 th of the array	C0000h - FFFFFh (A19 = A18 = 1)	256K x 16	4M
1	1 0	1/2 th of the array	80000h - FFFFFh (A19 = 1)	512K x 16	8M
1	0 1	3/4 h of the array	40000h - FFFFFh (A19:A18 not equal to 0 0)	768K x 16	12M
1	0 0	Full array	00000h - FFFFFh (Default)	1M x 16	16M

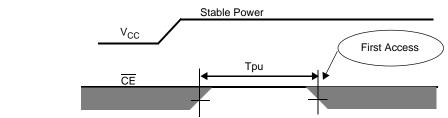
Page Mode

This device can be operated in a page read mode. This is accomplished by initiating a normal read of the device.

In order to operate the device in page mode, the upper order address bits should be fixed for four-word page access operation, all address bits except for A1 and A0 should be fixed until the page access is completed. For an eight-word page access, all address bits, except for A2, A1, and A0,

should be fixed. For a sixteen-word page mode all address bits, except for A3, A2, A1, and A0, should be fixed.

The supported page lengths are four, eight, and sixteen words. Random page read is supported for all three four, eight, and sixteen-word page read options. Therefore, any address can be used as the starting address.


Please, refer to the table below for an overview of the page read modes.

Page Mode Feature	4-Word Mode	8-Word Mode	16-Word Mode
Page Length	4 words	8 words	16 words
Page Read Corresponding Addresses	A1, A0	A2, A1, A0	A3, A2, A1, A0
Page Read Start Address	Don't Care	Don't Care	Don't Care
Page Direction	Don't Care	Don't Care	Don't Care

Power-up Characteristics

The initialization sequence is shown in the figure below. Chip Select $(\overline{\text{CE}})$ should be HIGH for at least 200 μs after V_{CC} has reached a stable value. No access must be attempted during this period of 200 μs .

Parameter Description		Min.	Тур.	Max.	Unit
Tpu	Chip Enable Low After Stable V _{CC}	200			μS

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage to Ground Potential .-0.2V to $V_{CCMAX} + 0.3V$

DC Voltage Applied to Outputs in High Z State $^{[8,\;9,\;10]}$ –0.2V to V_{CCMAX} + 0.3V DC Input Voltage^[8, 9, 10].....-0.2V to V_{CCMAX} + 0.3V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-Up Current	> 200 mA

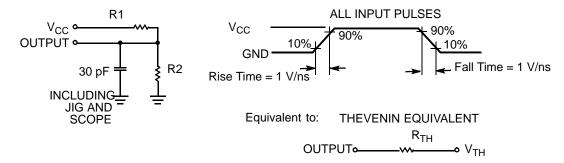
Device	Range	Operating Temperature (T _A)	V _{CC}
CYU01M16ZFC	Industrial	–40°C to +85°C	1.7V to 1.95V

DC Electrical Characteristics Over the Operating Range [8, 9, 10]

				CYU	CYU01M16ZFC-55			CYU01M16ZFC-70		
Parameter	Description	Test	Conditions	Min.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Unit
V _{CC}	Supply Voltage			1.7	1.8	1.95	1.7	1.8	1.95	V
V _{OH}	Output HIGH Voltage		.1 mA V to 1.95V	V _{CC} – 0.2			V _{CC} – 0.2			V
V _{OL}	Output LOW Voltage		$I_{OL} = 0.1 \text{ mA}$ $V_{CC} = 1.7 \text{V to } 1.95 \text{V}$			0.2			0.2	V
V _{IH}	Input HIGH Voltage	1.7V <u><</u> V	_{CC} ≤ 1.95	0.8 * V _{CC}		$V_{CC} + 0.3$	0.8 * V _{CC}		$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage	V _{CC} = 1.7	'V to 1.95V	-0.2		0.2 * V _{CC}	-0.2		0.2 * V _{CC}	V
I _{IX}	Input Leakage Current	$GND \leq V_{IN} \leq V_{CC}$		-1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	GND ≤ V	OUT ≤ V _{CC}	-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX}$ = $1/t_{RC}$	$V_{CC} = V_{CCmax}$ $I_{OUT} = 0 \text{ mA}$ CMOS levels		TBD	35		TBD	25	mA
		f = 1 MH	Z		TBD	5		TBD	5	mA
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\label{eq:controller} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V \\ V_{IN} &\geq V_{CC} - 0.2V \text{ or } \\ V_{IN} &\leq 0.2V, \\ f &= 0, \ V_{CC} = V_{CCMAX} \end{split}$			TBD	60		TBD	60	μА
I _{ZZ}	Deep Sleep Current	V _{CC} = V _C <u>CE=</u> HIG BLE=HIC	_{CMAX} , <u>ZZ</u> <u><</u> 0.2V, H or BHE and GH		TBD	10		TBD	10	μА

Capacitance^[11]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF


Thermal Resistance^[11]

Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedence, per	56	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)	EIA / JESD51.	11	°C/W

- 8. $V_{IL(MIN)}$ = -0.5V for pulse durations less than 20ns.
- 9. V_{IH}(Max) = Vcc + 0.5V for pulse durations less than 20 ns.
 10. Overshoot and undershoot specifications are characterized and are not 100% tested.
- 11. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Parameters	1.8V (V _{CC})	Unit
R1	14000	Ω
R2	14000	Ω
R _{TH}	7000	Ω
V_{TH}	0.90	V

Switching Characteristics Over the Operating Range^[12, 13, 14, 15]

		5	5 ns	70	0 ns	
Parameter	Description	Min. Max.		Min. Max.		Unit
Read Cycle			•	•		
t _{RC} ^[17]	Read Cycle Time	55	40000	70	40000	ns
t _{CD}	Chip Deselect Time CE, BLE/BHE High Pulse Time	5		5		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[13, 14, 16]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[13, 14, 16]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[13, 14, 16]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[13, 14, 16]		20		25	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[13, 14, 16]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High Z ^[13, 14, 16]		20		25	ns
Page Read Cycle	1		I	l .		
t _{PC}	Page Mode Read Cycle Time	20	40000	20	40000	ns
t _{PA}	Page Mode Address Access		20		20	ns
Write Cycle ^[15]			I	l .		
t _{WC}	Write Cycle Time	55	40000	70	40000	ns
t _{SCE}	CE LOW to Write End	50		60		ns
t _{CD}	Chip Deselect Time CE, BLE/BHE High Pulse Time	5		5		ns
t _{AW}	Address Set-Up to Write End	50		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{BW}	BLE / BHE LOW to Write End	50		60		ns
t _{SD}	Data Set-Up to Write End	25		25		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[13, 14, 16]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[13, 14, 16]	10		10		ns

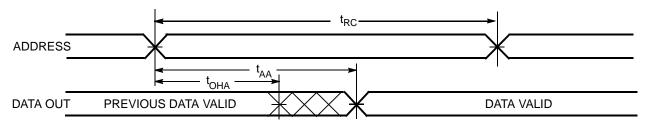
Notes:

16. High-Z and Low-Z parameters are characterized and are not 100% tested.

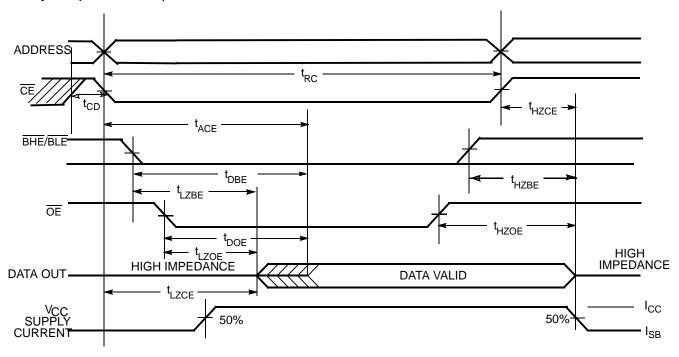
^{12.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 ns/V, timing reference levels of V_{CC}/2, input pulse levels of 0V to V_{CC}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

13. At any given temperature and voltage conditions t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. All low-Z parameters will be measured with a load capacitance of 30 pF (1.8V)

^{14.} t_{HZOE}, t_{HZEE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high-impedance</u> state.


15. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates

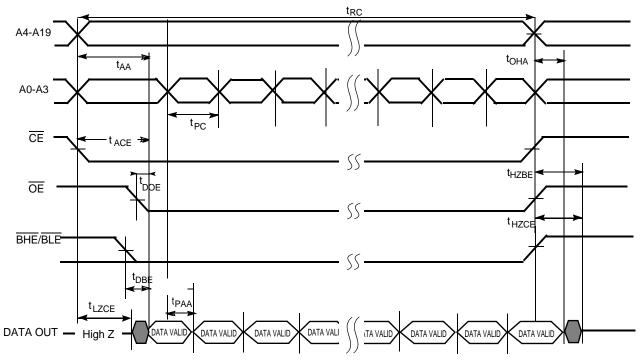
^{17.} If invalid address signals shorter than min.tRC are continuously repeated for 40us, the device needs a normal read timing (t_{RC}) or needs to enter standby state at least once in every 40 µs.



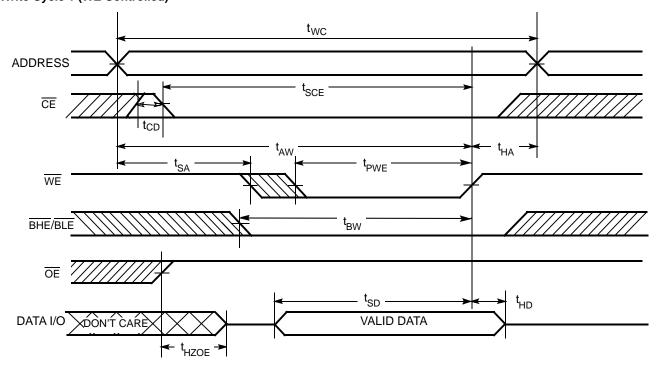
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[19, 20]

Read Cycle 2 (OE Controlled)[18, 20]


Notes:

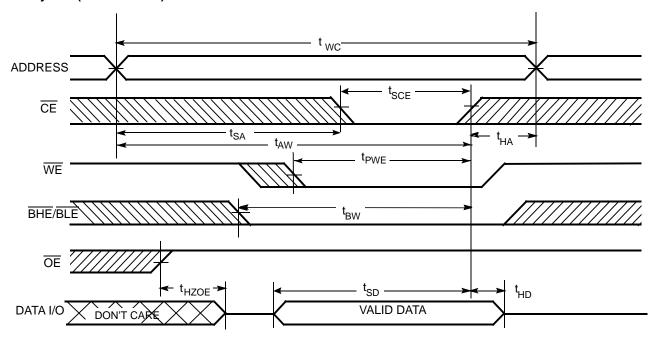
18. Whenever \overline{CE} , \overline{BHE} / \overline{BLE} are taken inactive, they must remain inactive for a minimum of 5 ns
19. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
20. \overline{WE} is HIGH for Read Cycle.



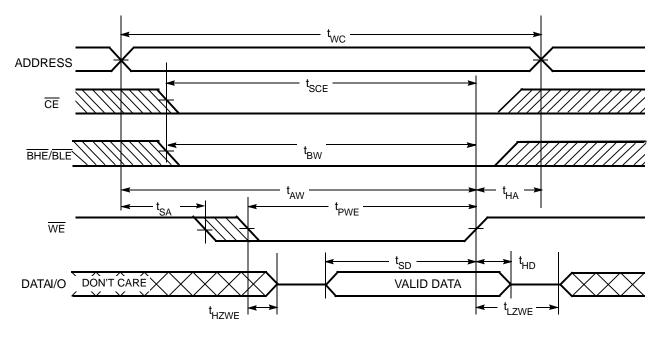
Switching Waveforms (continued)

Page Read Cycle ($\overline{ZZ} = \overline{WE} = V_{IH}$, 16 word access)^[17, 20]

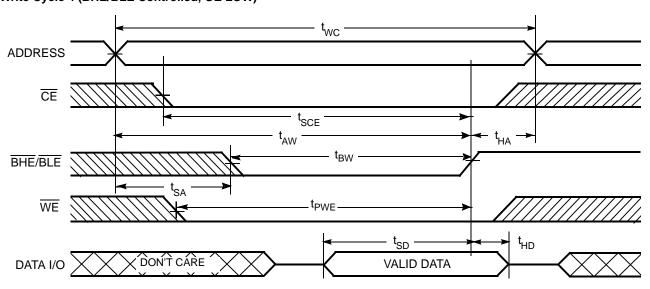
Write Cycle 1 (WE Controlled)[15, 16, 18, 21, 22]



Notes:


21. Data I/O is high-impedance if OE ≥ V_{IH}.
22. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)
Write Cycle 2 (CE Controlled)[15, 16, 18, 21, 22]


Write Cycle 3 (WE Controlled, OE LOW)[18, 22]

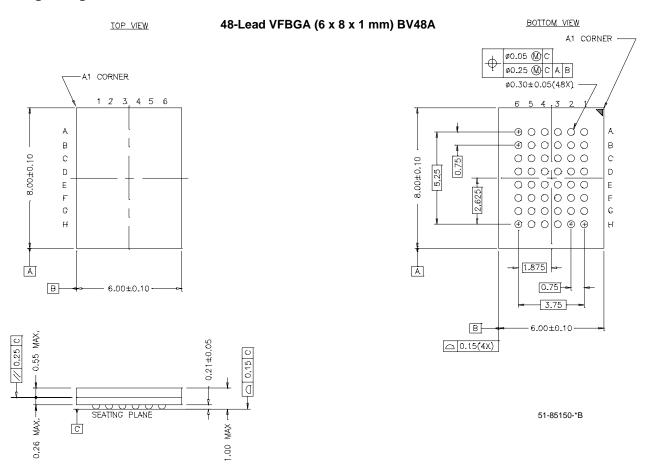
Switching Waveforms (continued)

Write Cycle 4 (BHE/BLE Controlled, OE LOW)[15, 18, 21, 22]

Truth Table^[23, 24]

ZZ	CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Н	Χ	Χ	Χ	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Н	Х	Х	Χ	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
Н	L	Х	Χ	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
Н	L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
Н	L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
Н	L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ in High Z	Read	Active (I _{CC})
Н	L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
Ι	L	Н	Ι	Н	┙	High Z	Output Disabled	Active (I _{CC})
Η	L	Н	Η	L	Н	High Z	Output Disabled	Active (I _{CC})
Н	L	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write (Upper Byte and Lower Byte)	Active (I _{CC})
Н	L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write (Lower Byte Only)	Active (I _{CC})
Н	L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write (Upper Byte Only)	Active (I _{CC})
L	Н	Х	Х	Н	Н	High Z	Deep Power-down	Deep Sleep (I _{ZZ})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CYU01M16ZFCU-55BVXI	BV48A	48-ball Fine Pitch VBGA (6 mm × 8 mm × 1 mm) Pb-Free	Industrial
70	CYU01M16ZFCU-70BVXI	BV48A	48-ball Fine Pitch VBGA (6 mm × 8 mm × 1 mm) Pb-Free	Industrial

23. H = Logic HIGH, L = Logic LOW, X = Don't Care.

24. During ZZ = L and CE = H, Mode depends on how the VAR is set up either in PAR or Deep Sleep Modes.

Package Diagram

MoBL is a registered trademark and MoBL3 and More Battery Life are trademarks of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	278869	See ECN	SYT	New Data Sheet
*A	280850	See ECN	REF	Updated Ordering information to incorporate lead-free parts.
*B	314034	See ECN	PCI	Corrected Part Number Added Operating Range in Features Section Moved address lines A8 - A10 from Column decoder to Row decoder in the Logic Block Diagram Changed Pin Configuration Diagram Name from FBGA to VFBGA Added pin E3 in note #2 Modified description on Deep Sleep Mode Changed t_{ZZWE} description Changed θ_{JA} and θ_{JC} from 55 and 17 °C/W to 56 and 11 °C/W respective Modified Test Condition for t_{IX} and t_{IX} from 10 ns to 5 ns Changed t_{IX} and t_{IX} from 45 to 50 ns Changed t_{IX} and t_{IX} from 6000 ns to 40000 ns Changed t_{IX} and t_{IX} from 15 ns to 20 ns Added Parameter t_{IX} in AC Table and its corresponding footnote in Note Section Changed R1 and R2 from 13500 and 10800 t_{IX} to 14000 t_{IX} Changed RTH from 6000 to 7000 t_{IX} Parameter t_{IX} added in Read Cycle 2 and Write Cycle 1 Timing Diagram Changed from Advance Information to Preliminary
*C	351766	See ECN	PCI	Modified Logic Block Diagram Modified description on Deep Sleep Mode Deleted Page Write in the Page Mode Feature Table Added CE, BHE and BLE in test conditions for I _{ZZ} in DC Table Modified condition in the third row of the Truth Table for ZZ Pin from X to